
 Electronic copy available at: http://ssrn.com/abstract=2748965 

CHILD MORTALITY USING BAYESIAN SEMI-PARAMETRIC DISCRETE-TIME SURVIVAL MODEL 

 
Author: Tesfaye Abera Jimma, Department of Mathematical and Statistical Science Ethiopian Civil Service University, Tel: +251; 911-

679202/+251-912-152361; E-mail: Tesfaye4god@gmail.com; P.O. Box 57935, Addis Ababa, Ethiopia.  

 

1 
 

___________________________________________________________________________________________ 

Abstract 

The Bayesian Approach offers the viable and rigorous solution, though there is also the added benefit of providing 

much-needed uncertainty and probability assessments in non-linear and non-Gaussian situations in a valid and 

rigorous way. Mortality and its various determinants have been traditionally studied in a regression modeling 

framework. Initial studies mostly used the usual linear regression models which, however, are not appropriate in 

situations where the mortality information is given by a binary indicator of death or alive. Binary regression models 

(logit and probit) are, therefore, a logical alternatives. There are, however, problems, with logit and probit models, 

namely, that they do not take into consideration the information on the survival time. Hence, most studies now 

utilize the survival analysis techniques. Recently, Fahrmeir and co-researchers at the LMU Munich have proposed a 

Bayesian Geo-Additive modeling framework which encompasses most of the known regression models and 

improves upon their shortcomings. The proposed model is also called Bayesian semi-parametric structured 

regression model..  

Key words: Bayesian Semi-Parametric Discrete-Time Survival Model, Bayesian Model Comparison, Markov Chain 

Monte Carlo (MCMC), Smoothness Priors. 

___________________________________________________________________________________________ 

  

1. Introduction 

There has been much recent interest in Bayesian inference for generalized additive and related models. The 

increasing popularity of Bayesian methods for these and other model classes is mainly caused by the introduction of 

Markov Chain Monte Carlo (MCMC) simulation techniques which allow realistic modeling of complex problems. 

In the last two decades, great advances in technology and industry have produced various high throughput 

measurement instruments. Large scale measurements have been collected in different areas in industry and 

technology, in the form of data as curves (e.g., thermal diffusivity measurements), data array and images (e.g., DNA 

microarray experiments), and spatial observations of space-time systems (e.g., satellite images), etc. Efficient use of 

these great resources raises a host of new methodological and experimental design issues in statistics, such as: how 

to assess and calibrate the instruments, how to combine data from heterogeneous sources, how to do the error 

propagation in high dimensional and non-linear input-output systems, how to combine model uncertainty and prior 

information (e.g., type B uncertainty) with experimental results, how to design multi-stage experiments used in 

automated testing and other areas. The Bayesian Approach offers a systematic and flexible approach to these 

problems. By adopting an objective or non-informative prior, the Bayesian Approach produces estimates and 

uncertainty measures comparable to the classical approach. 
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2. Bayesian Semi-Parametric Discrete-Time Survival Model 

Survival time is not recorded continuously but is only known to lie within a month or, generally, a time interval. 

Data of this kind are known as interval censored. Since many ties occur, these data cause problems when 

continuous-time models are used. Instead of continuous time one observes the discrete time   with values   

     , where     denotes death in month or interval  , and   is the last observation interval. Suppose     is a 

vector of covariates up to month  , then the discrete hazard function is defined as: 

 ( |   )   (   |       )……. (1) 

It is the conditional probability of death in month   given that the child has reached month  . The associated discrete 

survivor function is given by: 

 ( |   )   (   |   )  ∏ (   ( |   ))
 
   ……. (2) 

Survival information on each child is recorded as  (      
    

 )      is the number of observed child,    is the observed 

lifetime in months,    is the survival indicator with      if child   is dead and      if it is still alive. Thus 

for      ,    is the age of the child at death, and for       ,    is the current age of the child at interview.      
  

(            )  is the observed covariate sequence. Discrete time survival models can be cast into the framework 

of binary regression models by defining binary event indicators              with  

    {
                      

         
   ( ) 

The hazard function for child   can then be written as a binary response model 

 (     |   )   (   )    ( ) 

Where     are the covariate processes for child  .   is an appropriate response or link function, and the predictor      

is a function of the covariates. Common choices for such survival models are the grouped Cox model, logit or probit 

models. We shall consider here the probit model. The usual model is then 

 (     |   )   (   )      ( ) 

With partially linear predictor 

      ( )     
           ( ) 

The baseline hazard effect   ( )          is an unknown, usually non-linear function of   to be estimated from 

the data. Treating the effects   ( )          as separate parameters usually gives either very unstable estimates or 

may even lead to divergence of the estimation procedure. In a purely parametric framework the baseline hazard is 

therefore often modeled by a few dummy variables dividing the time-axis   into a number of relatively small 

segments or by some low order polynomial. In general it is difficult to correctly specify such parametric functional 

forms for the baseline effects in advance. Non-parametric modeling based on some qualitative smoothness 

restriction offers a more flexible solution to explore unknown dynamic patterns in   ( ). Then ( ) can be regarded 

as the basic form of a semi-parametric predictor where the effects   of covariates are fixed and time-constant.  
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In many applications, the restriction to constant covariate effects is not realistic. Rather, the effect of some 

covariates may vary over time. Therefore, the predictor is generalized to 

      ( )  ∑   

 

   

( )       
          ( ) 

Here    consists of covariates with time constant effect  , the smooth functions   ( )    are non-linear effects of 

covariates           . 

3.  Prior Distribution  

In Bayesian inference, the unknown functions                 the fixed effects parameters   (       )
 as well 

as the variance parameter    are considered as random variables and have to be supplemented by appropriate prior 

assumptions. In the absence of any prior knowledge we assume independent diffuse priors        constant,    

      for the parameters of fixed effects. Another common choice is highly dispersed Gaussian priors. Several 

alternatives are currently available for a smoothness prior of the unknown function            .Among others, 

these are random walk priors (Fahrmeir and Lang, 2001a), Bayesian smoothing splines (Hastie and Tibshirani, 

2000) and Bayesian P-splines (Lang and Brezger, 2004), are the most known.  

The General Form of the Priors  

Suppose that   ( ( )    ( ))
 
 is the vector of corresponding function evaluations at observed values of   . We 

express the vector   as the matrix product of a (deterministic, non-random) design matrix   and a vector of 

unknown regression parameters  , i.e. 

      

Then, the general form of the prior for   is  

 |        ( 
 

   
    )         ( ) 

       , is a penalty matrix that penalizes too abrupt jumps between neighboring parameters. In most cases   will 

be rank deficient and therefore the prior for    improper. This implies that  |   follows a partially improper 

Gaussian prior  |    (      ) where    is a generalized inverse of the penalty matrix   . In the frequentist 

approach the smoothing parameter is equivalent to the variance parameter    which controls the tradeoff between 

flexibility and smoothness. In order to be able to estimate the “smoothing parameter”    simultaneously with  , a 

highly dispersed but proper hyper-prior is assigned to   .The proper prior for    is required to obtain a proper 

posterior for    (Hobert and Casella, 1996).We choose an inverse gamma distribution with hyper-

parameters          i.e. 

     (   ) 

With probability density function given by  

 (  |   )  (  )       (
 

  
) 
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Common choices for                            (        ).Alternatively, one may take             

Brezger and Lang (2006) also suggest a general structure of the priors as 

 (  |  
 )        

 

(  
 )

    (  )  ⁄
   ( 

 

   
   

     ) 

Where    is a penalty matrix that shrinks parameters towards zero or penalizes too abrupt jumps between 

neighboring parameters. In most cases    will be rank deficient and therefore the prior for    is partially improper. 

 Priors for Fixed Effects 

As indicated above for the parameter vector   of fixed effects we choose a diffuse prior 

        Constant,                    

Another choice would be to work with a multivariate Gaussian distribution    (      ) .  

 Priors for Time Varying Effects under Linear Setup 

Priors for the unknown functions         depend on the type of the covariates and on prior beliefs about the 

smoothness of    . In the following we express the vector of function evaluations    (  (   )     (   ))
 

 of a 

function     as the matrix product of a design matrix    and a vector of unknown parameters    
    i.e. 

     
    

Then, we obtain the predictor which takes linear form as    

                  

Where   corresponds to the usual design matrix for categorical covariates. For the variance parameter     , the 

inverse gamma with hyperparamters         assumed as discussed above. On the other hand if the unknown 

function              assumes a smooth nonlinear function, then a random walk priors or Bayesian P-spline can 

be considered as discussed in the next section. 

 First and Second Order Random Walk Priors 

Let us consider the case of a time scale or continuous covariate   with equally-spaced observations            , 

     then,  ( )     ( )defines the ordered sequence of distinct covariate values. Here   denotes the number of 

different observations for   in the data set. A common approach in dynamic or state space models is to estimate one 

parameter  ( ) for each distinct    ( ); i.e., define,  ( )   ( ( )) and let    ( ( )    ( ))
 
 denote the vector 

of function evaluation. Then a first order random walk prior for   is defined by  

 ( )   (   )   ( )           ( ) 

A second order random walk is given by  

 ( )    (   )   (   )   ( )     (  ) 

With Gaussian errors  ( )  (    ) and diffuse priors  ( )   const, or  ( ) and  ( )    const, for initial values, 

respectively. Both specifications act as smoothness prior that penalize too rough functions  . A first-order random 
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walk penalizes too abrupt jumps  ( )   (   ) between successive states and a second-order random walk 

penalizes deviations from the linear trend   (   )   (   ) . In addition, the variance   controls the degree of 

smoothness of     Thus the conditional prior distribution of   ( )  given its immediate past  (   ) is given by: 

  |      
   (      

 )             (  ) 

Moreover, random walk priors may be equivalently defined in a more symmetric form by specifying the conditional 

distributions of function  ( ) given its left and right neighbors. That means, we can write the prior in (        ) in 

general form as  

 |      ( 
 

   
    )           (  ) 

The penalty matrix is of the form       .where    is a first or second order difference matrix. For example, for a 

random walk of first order the penalty matrix is given by:  

 

 

 

 

Here the design matrix   is the penalty matrix that penalizes too abrupt jumps between neighboring parameters. 

More often,   is not full rank and this implies that  |   follows a partially improper Gaussian prior. 

 |    (      ) 

Where     is a generalized inverse of the penalty matrix   

For the case of non-equally spaced observations, random walk or autoregressive priors have to be modified to 

account for non-equal distances     ( )   (   )) between observations. Random walks of first order are now 

specified by:  

 ( )   (   )   ( )     (  ) 

Where:  ( )  (     
 ) 

                                 
  

Similarly random walks of second order is given by  

 ( )  (  
  

    
)  (   )  (

  

    
) (   )   ( )   (  ) 

 

Where  ( )  (     
 )  and     is an appropriate weight. Several possibilities are conceivable for the weights. See 

(Fahrmeir and Lang, 2001) for a discussion. 
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 Bayesian P-splines  

Any smoother depends heavily on the choice of smoothing parameter, and for P-spline in a mixed (fixed and time 

varying) framework. A closely related approach for time scale or continuous covariates is based on the P-splines 

approach introduced by Eilers and Marx (1996). The basic assumption of this approach is that the unknown function 

   can be approximated by a spline of degree    with equally spaced knots                      

     within the domain of    .The domain from      to     can be divided into    equal intervals by        knots. 

Each interval will be covered by     B-splines of degree  .The total number of knots for construction of the B-

splines will be         .The number of B-splines in the regression is      . It is well known that such a spline 

can be written in terms of a linear combination of        B-splines basis functions  , i.e. 

  (   )  ∑     

 

   
( )    (  ) 

The basis functions    are defined locally in the sense that they are nonzero only on a domain spanned by     

knots. The     design matrix    for P-splines is more intricate than the case of random walk priors. Each row   

contains the value of the B-spline basis functions evaluated at    hence   (   )     (   ). In accordance with the 

properties of B-splines, each row   has     non-zero values. As for the number of knots, Eilers and Marx (1996) 

recommended the number of inner knots to range between 20 and 40 and introduced a penalization of the 

differences between regression coefficients of adjacent B-spline basis functions in order to generate a smoothing 

effect.  

4. Posterior Inference 

When performing Bayesian inference, all inferential conclusions are based on the posterior of the model. In an 

empirical Bayes approach to structured additive regression, no hyper-prior are assigned to the hyper-parameters, i.e. 

the variances   
  are treated as fixed. In this case, the specific form of the posterior depends only on the 

parameterization of the regression terms in the model. Then, we use Markov Chain Monte Carlo (MCMC) 

simulations to draw samples from the posterior and statistical inference is done by means of Markov Chain Monte 

Carlo techniques in a full Bayesian setting. Now we restrict the presentation to models with predictor ( ) .Full 

Bayesian inference is based on the entire posterior distribution. Let   be the vector of all unknown parameters, and 

then the posterior is given by 

 ( | )   (                       )∏ (  |  
 ) (  

 )

 

   

 ( ) 

    (                       ) ∏
 

(  
 )

  (  )  ⁄

 

   

   ( 
 

   
   

     )∏(  
 )

     
   ( 

  

  
 )

 

   

 

Bayesian inference via MCMC is based on updating full conditionals of single parameters or blocks of parameters, 

given the rest and the data. For Gaussian models, Gibbs sampling with so-called multi move steps can be applied. 

For non-Gaussian responses Gibbs sampling is no longer feasible and Metropolis Hastings (MH) algorithms based 
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on iteratively weighted least squares (IWLS) proposals are needed. More detail can be found in Rue (2001) or 

Fahrmeir and Lang (2001). 

In a fully Bayesian approach, parameter estimates are generated by drawing random samples from the posterior (8) 

via MCMC simulation techniques. The variance parameters   
  can be estimated simultaneously with the regression 

coefficients    by assigning additional hyper-priors to them. The most common assumption is, that 

      
      independently inverse gamma distributed, i.e.  

    (     ) , with hyper-parameters    and    specified a 

priori. A standard choice is to use            . In some data situations (for small sample sizes), the estimated 

non-linear functions    may depend considerably on the particular choice of hyper-parameters. It is therefore good 

practice to estimate all models under consideration using a (small) number of different choices for    and    to 

assess the dependence of results on minor changes in the prior assumptions. The full conditionals for the variance 

parameters   
 are inverse gamma with parameters              (  )                    and updating can 

be done by simple Gibbs steps, drawing random numbers directly from the inverse gamma densities. Convergence 

of the Markov chains to their stationary distributions is assessed by inspecting sampling paths and autocorrelation 

functions of sampled parameters. In the majority of cases, however, the IWLS updating scheme has excellent mixing 

properties and convergence problems do not occur. 

For Gaussian prior distributions, efficient proposal densities for exponential family and hazard regression can be 

derived based on iteratively weighted least squares (IWLS) proposals as introduced by Gamerman (1997) in the 

context of random effects models(Brezger and Lang, 2006 for exponential family regression and Hennerfeind, 

Brezger and Fahrmeir, 2006 for hazard regression). Since the density of the Gaussian prior for the regression 

coefficients is differentiable, the corresponding full conditionals can be approximated with a Taylor series 

expansion. The general idea of IWLS proposals is then to obtain a Gaussian proposal by matching the mode and the 

curvature of the full conditional based on the Taylor expansion. This proposal has two advantages: Firstly, it can be 

used with multivariate coefficient vectors to take correlations into account in the proposals and, secondly, it 

automatically adapts to the form of the full conditional thereby avoiding manual tuning of the proposal densities. 

Both sampling schemes gave rather coherent results; we rely hereon for updating the parameters in an MCMC 

sampler, we use a Metropolis Hastings (MH) algorithm based on iteratively weighted least squares (IWLS) 

proposals, implemented in BayesX. 

5. Model Selection  

A widely used statistic for comparing models in a Bayesian framework is the Deviance Information Criterion. The 

deviance information criterion (DIC) is a hierarchical modeling generalization of the AIC (Akaike information 

criterion) and BIC (Bayesian information criterion, also known as the Schwarz criterion). It is particularly useful in 

Bayesian model selection problems where the posterior distributions of the models have been obtained by Markov 

chain Monte Carlo (MCMC) simulation. Like AIC and BIC it is an asymptotic approximation as the sample size 
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becomes large. It is only valid when the posterior distribution is approximately multivariate normal. Define the 

deviance as   ( )        ( | )    , where   are the data,   are the unknown parameters of the model 

and  ( | ) is the likelihood function.   is a constant that cancels out in all calculations that compare different 

models and which therefore does not need to be known. The expectation  ̅   [ ( )] is a measure of how well the 

model fits the data; the larger this is, the worse the fit. The effective number of parameters of the model is computed 

as     ̅   ( ̅), where  ̅ is the expectation of  . The larger this is, the better it is for the model to fit the data. The 

deviance information criterion is calculated as  

        ̅ 

The idea is that models with smaller DIC should be preferred to models with larger DIC. Models are penalized both 

by the value of  ̅, which favors a good fit, but also (in common with AIC and BIC) by the effective number of 

parameters    . Since  ̅ will decrease as the number of parameters in a model increases, the    term compensates 

for this effect by favoring models with a smaller number of parameters. The advantage of DIC over other criteria, 

for Bayesian model selection, is that the DIC is easily calculated from the samples generated by a Markov chain 

Monte Carlo simulation. AIC and BIC require calculating the likelihood at its maximum over  , which is not readily 

available from the MCMC simulation. But to calculate DIC, simply compute  ̅ as the average of  ( ) over the 

samples of  , and  ( ̅) as the value of   evaluated at the average of the samples of   . Then the DIC follows 

directly from these approximations.  

6. Sensitivity Analysis 

Investigation of sensitivity to the choice of hyper-prior must be considered since the performance of the selected 

models can be sensitive to the choice of the variance components priors. Therefore consider alternative 

specifications, and carry out sensitivity of the selected models assuming an IG with scale and shape parameters   

and   respectively. Assume the four alternatives a=0.5, b=0.0005; a=1, b=0.005; a=0.001, b=0.001; a=0.01, b=0.01. 

The first specification was suggested by Kelsall and Wakefield (1999), for modelling the precision of the spatial 

effects in an MRF model. The second alternative was proposed in Besag and Kopparberg (1995).The remaining two 

priors with equal scale and shape parameters, especially          , have often been used as standard choice on 

the variances of random effects. Re-running MCMC simulations based on these specifications, using the selected 

models. 

7. Conclusion 

Traditional parametric duration models are not flexible enough for the identification and separation of cohort and 

period effects. Without any rather informative prior knowledge about specific forms of non-linear effects, a very 

large number of parameters have to be introduced, making estimation either very unreliable or even impossible due 

to divergence or non-existence of estimates. In this situation, non- or semi-parametric approaches that do not assume 

certain parametric forms of various non-linear and temporal effects are needed. Bayesian Approaches which allow a 

flexible framework for realistically complex models. These models allow us to analyze usual linear effects of 
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categorical covariates, multiple time scales and non-linear effects of continuous covariates within a unified semi-

parametric Bayesian framework for modeling and inference. 

_______________________________________________________________________________________ 
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