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Introduction 
Warming and drying represent the most direct impacts of climate change on humans.  
Communities reliant on rainfed agriculture to meet their food and nutrition needs are at high risk 
for negative health and economic outcomes associated with climate change (IPCC 2013, Brown 
et al. 2015).  Subsistence communities in rural Sahelian Africa, where rainfall is inconsistent and 
where temperatures can spike to extremely high levels, face notable agricultural, health and 
livelihood challenges associated with climate change (Grace et al. 2015, Davenport et al. 2017).  
In these contexts, and for these communities, seasonal rainfall is vital for producing the required 
food needed to meet the family’s nutritional and caloric demands.  If rains are inadequate then 
household food production is constrained, putting the health and security of families at risk.  
High temperatures can impact agricultural yields (in different ways, depending on the setting and 
the precipitation) or they can can cause heat waves leading to heat stress and associated adverse 
health outcomes (Amegah et al. 2016, Strand et al. 2011, Muller et al. 2011).  Warm 
temperatures and wet conditions can also create an ideal setting for malaria transmission 
(Kudamatsu et al. 2012, Tanser et al. 2003).  Consequently, a rainy, warm season that may seem 
positive for agricultural production may result in increased exposure to disease or an increase 
risk of exposure to heat stress.  
 
Because of these complexities, research related to climate’s impacts on individual health 
outcomes related to malnutrition often struggles to isolate and identify the mechanisms 
underlying the relationship between a climate measure and a health outcome.  In other words, it 
is difficult to explain why the relationship between seasonal rainfall totals and a measure of 
malnutrition, for example is negative in some cases and positive in other cases (Grace et al. 
2012, Bakhtsiyarava et al. 2018, Davenport et al. 2017).  Similarly, high temperatures are 
generally assumed to have a negative impact on health outcomes but research that investigates 
temperature conditions and health outcomes are inconsistent, showing both positive and non-
significant associations using varying metrics (Xu et al. 2012, Amegah et al. 2016).  
 
The goal of this paper is to isolate and examine the differential pathways that connect 
climate/weather variability to child health outcomes. This goal will be accomplished through the 
application of climate indicators designed to capture the complexities of different climate related 
risks and isolate their impacts based the timing and duration of exposure. Specifically, we focus 
on infant birthweight outcomes with attention to local weather conditions and climate extremes 
associated with the three most frequently posited potential drivers of adverse health outcomes: 
heat stress, malaria, and food insecurity.   We focus on Mali, where the vast majority of 
individuals are dependent on rainfed agriculture and where malaria is endemic.  Additionally, 
Mali’s seasonal variability – a hot dry season and a single rainy, warm and short growing season 
– facilitate temporal isolation of specific types of climate related exposures.  



 
To conduct our analysis, we incorporate three measures of climate conditions that are designed 
to capture the specific potential pathways of interest. These measures reflect the spatial and 
temporal complexities of each of the three dimensions and are derived from related research.  We 
modify them somewhat from their original development to accommodate the available data as 
well as to account for the temporal and geographic aspects of the Malian context.  Key to our 
research design, the composite climate measures reflect spatial and temporal variation as they 
relate to the three primary pathways hypothesized to link climate to child health and will be 
matched to individuals to investigate how exposure to specific conditions during pregnancy 
impacts infant birth weights. Individual level birth weights, an anthropometric measure that 
varies according to biological and environmental conditions a woman experiences during 
pregnancy (Vitora et al. Black et al.), come from multiple periods (2000, 2006 and 2012) of the 
spatially referenced Demographic and Health Survey (DHS) collected for Mali.  These data will 
be merged with the spatially and temporally varying climate measures with close attention to the 
location and timing of individual exposures.   
 
 
Background – using climate and weather data to estimate exposure to stressors 
Research investigating the impacts of climate on health and development in sub-Saharan Africa 
has resulted in a range of results (e.g., Bakhtsiyarava et al. 2018, Grace et al. 2012, Kudamatsu et 
al. 2012; see also Xu et al. 2012, Amegah et al. 2016, Phalkey et al. 2014).  Such non-convergent 
results are very likely a result of inconsistent climate data sources and climate variable 
definition, and also the nuanced and complex biological response to climate extremes—including 
acclimatization—and an individual’s socioeconomic status, which impacts access to resources to 
alleviate negative health outcomes.  Researchers often focus on aggregate rainfall and 
temperature trends and theorize that these climate measures impact health outcomes through 
various pathways - primarily disease (Kudamatsu et al. 2012), food insecurity (Davenport et al. 
2017), or heat stress (Asamoah et al. 2018, Xu et al. 2012, Phalkey et al. 2014).  However, the 
linkages between climate and health are complex and difficult to detect using aggregate climate 
conditions. For example, seasonal or annual total precipitation provides little information on 
local agricultural yields and annual average maximum temperature provides little information on 
heatwave frequency and duration.   
 
Seasons when climate conditions are likely to increase the likelihood of malaria transmission can 
be identified based on historical norms, but monthly climate data can help to refine the spatial 
and temporal detail allowing for variability across years and over space.  In other words, 
aggregate climate conditions do not always adequately reflect the within-season variability that 
drives negative health outcomes.  Applying measures that have been developed precisely to 
capture agricultural productivity/food availability, malaria conditions and heat waves to analyses 
of child health outcomes associated with malnutrition, malaria and heat stress – will help to sort 
out the different pathways that link climate to adverse health outcomes. 
 
Malaria 
Malaria likely increases the risk of stillbirth and spontaneous abortion, but it also is linked to low 
birth weight and birth defects (Desai 2007, McFalls and McFalls 1984, Kudamatsu et al. 2012). 
Individual-level disease histories are virtually non-existent for sub-Saharan African countries 



making it impossible to investigate an individual’s specific health background and their later life 
health.  Aggregate measures of disease presence are also non-existent or insufficient because 
highly detailed community-level data or health surveillance type data on malaria cases or 
outbreaks is difficult to come by. Ultimately this lack of data leads researchers to develop 
alternative strategies for measuring the potential for malaria presence in a given area during a 
given time frame.  In some cases (normally smaller-scale studies), researchers will simply 
identify the typical rainy season months as being high malaria transmission months (for example, 
Berry et al. 2018).  This approach ignores any variability in actual weather patterns and so is not 
appropriate for spatial or temporal analyses comparing outcomes over time and space.  Some 
analysts, especially in studies where the data spans many countries and years, use different 
measures of rainfall or more sophisticated composite indicators that consider both temperature 
trends and rainfall trends together.  In the case of the combined temperature/rainfall index, high 
frequency climate data are used to derive a malaria index capable of identifying, over space and 
time, climate conditions that support the existence of the parasite and the vector needed to 
transmit malaria (Tanser et al. 2003, Kudamtsu et al. 2012).  
 
This more complex and physically-based indicator is capable of capturing variation over time 
and space that cruder measures are not able to capture. This measure has been used to investigate 
patterns of infant mortality across sub-Saharan Africa (Kudamatsu et al. 2012).  We use this 
composite, climate-based measure to identify months and locations (spatial resolution of ~5 km) 
where the parasite and vector are likely to be present and transmission rates are expected to be 
higher.   Please see the Tanser et al. (2003) and Kudamatsu et al. (2012) for specific details on 
the construction and validation of the malaria index. 
 
Food Insecurity 
Food insecurity is associated with adverse health outcomes for pregnant and breastfeeding 
women and their children.  Food insecurity can lead to low birth weight, low height-for-age 
(stunting), low weight-for-age (wasting), among a wide range of other adverse health outcomes 
that can last into adulthood.  There are a wide range of factors that drive community- or 
household-level food insecurity, with food availability featuring prominently in studies focused 
on sub-Saharan Africa and small-scale farming households (Grace et al. 2016, Smith and Haddad 
2005, Butt et al. 2005).  Ideal measures of household food availability would include information 
on farm yield, agricultural storage, presence of locally available food for purchase, diversity and 
quality of available food, perceptions of food security and other factors (Barrett 2010, Myers et 
al. 2017, Timmer 2010) and would be available at monthly (or finer) or seasonal time-scales for 
each household.  As expected, data of this type is rarely available for sub-Saharan African 
households and never available with the temporal and spatial detail suitable for a study of 
individual-level child health outcomes.   
 
A solution that researchers and development agencies have used to estimate food availability 
and, consequentially food insecurity, is to use remotely sensed data of vegetation.  The 
Normalized Difference Vegetation Index (NDVI) serves as a measure of greenness and because 
of the way the satellites collect data and the way the measure is calculated, it is available at a fine 
spatial scale – usually finer than 1 km.  The temporal frequency is also fine – and measures of 
NDVI are available every 8 days.  Therefore, NDVI produces a measure of vegetation 
throughout the year and at a scale that is relevant for a village or community.  In rainfed 



agricultural settings, NDVI indicates which areas (communities or villages or plots) are greener 
than others and during what time periods.  For food availability estimates, the standard approach 
is to calculate the maximum NDVI value for each spatial unit over the growing season, which 
has been shown to be a good indicator of agricultural production in some settings (Husak and 
Grace 2016, Chivasa et al. 2017, Funk and Budde 2009).  For estimates of a village’s food 
insecurity, an analyst identifies the area where agriculture is likely to be produced and aggregates 
the maximum NDVI pixels within that area to calculate annual growing season food production. 
In years where the NDVI value is lower than other years or than some threshold, that community 
may have faced food insecurity.  
 
 
Heat Stress 
Heat stress is hypothesized to have negative impacts on the placenta and the developing fetus 
and is therefore related to adverse pregnancy outcomes like low birth weight, pre-term birth, and 
other related outcomes.  The impact of exposures during different stages of pregnancy is not well 
understood but it is theorized that exposure to high temperatures during conception and early 
stages of pregnancy may increase the likelihood of miscarriage – ultimately resulting in heavier 
babies at birth as only the healthiest fetuses result in live birth (cite).  Exposure during later 
stages of pregnancy has inconsistent outcomes but is typically associated with increased risk of 
pre-term birth, thus resulting in lower birth weights.  
 
Temperature measures used in climate-health analyses rely on relatively coarse-spatial scale 
(usually 25-50 km) and either fine (daily maximum values, for example) or coarse (monthly or 
yearly averages) temporal scale.  There are several different approaches used to aggregate 
temperature data with health or other population data.  Among the common approaches are to 
calculate annual, seasonal, or monthly means of daily maximum values.  Or to derive heat wave 
indicators which often identify sequences of days where the daily maximum exceeds a specific 
threshold or percentile of the temperature distribution for a given location.   However, in some 
subsistence-based farming settings, increased temperatures may correspond to increased 
agricultural yields which may be associated with higher birth weights.   
 
 
Pathways in application 
 
While these concepts are general, the ways in which the specific stressor is measured is context 
dependent.  Therefore, to appropriately investigate these pathways in application, we must 
consider the particular context of Mali as it relates to each pathway.  Figure 1 highlights general 
rainfall and temperature trends over a given year in Mali.  Notably, the hot season occurs from 
March-May, with temperatures decreasing as the rains begin in May.  The rainy season is the 
primary agricultural growing season for Malians.  Planting typically occurs sometime in June 
and harvest follows in September.  There is a clear north-south rainfall gradient with much lower 
levels of rainfall in the north and higher levels in the south.  Apart from the north-south gradient, 
within country rainfall variability is fairly high – villages as close as 10-20km apart may 
experience different rainfall conditions that modify the start, length and overall quality of the 
season.  Maize, millet and sorghum are the primary cereal crops. In some cases, rice, cotton and 
vegetables (tomatoes, onions, and garlic) serve as higher valued cash crops.  As in other contexts 



where malaria is endemic, the primary malaria season occurs during the growing season with 
most cases occurring in June-September.  Because of within country variability in rainfall during 
a given year, there is spatial variability in malaria transmission as well. 
 
Figure 1: Mali climatology from 1981-2016 averaged over all DHS clusters 
 

  
 
Identifying the specific mechanism using cross-sectional, observational data is challenging 
especially because some of these conditions are interrelated and, the climate measures used to 
capture rainfall and temperature variability, are necessarily proxy measures which may reflect 
factors that are not explicitly accounted for in the theoretical design.  To better isolate the 
contributions to adverse health outcomes associated with each of these different potential drivers, 
we use different measures that are derived from different remotely sensed and physically-based 
data sets.  Each measure has been validated in other research and is being modified for use in our 
particular case focused on Mali and birth weight outcomes.   
 
Birth weight is used because it provides a very identifiable time period of risk – the pregnancy 
(approximately 9 months before a child’s birth date) and pre-pregnancy/conception periods 
(approximately 12-9 months before a child’s birth date).   When a pregnant person is exposed to 
food insecurity, malaria, and heat stress during their pregnancy – the weight of the infant at birth 
may be impacted.  Timing of exposure is important – as exposures during pre-



pregnancy/conception periods and early pregnancy may actually contribute to failed conceptions 
or spontaneous abortions  and result in a selection bias producing heavier babies at birth (see 
Wilde et al. 2017 and Berecca et al. 2019).  Using trimester specific measures of exposure allows 
us to consider the differential risks associated with each trimester on birth weight outcomes.   
 
To separate out temperature effects associated with agriculture versus those associated with heat 
stress, we exploit Mali’s unique agricultural calendar.  Specifically, the hot season (from March-
May) – where temperatures can exceed 45C – does not occur during the rainy growing season 
(June – September).  Focusing on different categories of temperatures conditions allows for us to 
separately examine the impact of heat waves on pregnancy outcomes separately from the food 
production pathway.  Similarly, considering rainfall alone combines conditions that are ideal for 
malaria and for agricultural production.  However, NDVI serves as an established measure of 
agricultural production in Mali, where vegetation is almost always indicative of a source of food 
(or cash, in the case of cash crops).   Using NDVI to measure seasonal quality of the prior 
growing season will help to account for the complicated relationship between rainfall, malaria, 
and food insecurity.  Details on the specific construction of each pathway are presented in the 
measures section.  
 
 
Table 1 summarizes the pathways, measures/data, and timing considerations for use in this 
analysis. 
 
 
Table 1: Primary mechanisms linking climate and infant health 
 
 

Pathway Data/Measure Hypotheses and Associated Timings 
Food Insecurity Normalized Difference 

Vegetation Index 
High vegetation during growing season produces better/more 
crops which allows for greater food storage. Potential for a 
positive relationship during the following year's hunger 
season because more agricultural production implies 
improved household food availability.  The results of 
improved storage/food availability would likely be 
experienced 9-12 months AFTER the growing season where 
higher birth weights may be observed. 

Disease (Malaria) Rainfall and 
Temperature 

Increased risk of disease occurs during the key malarious 
months.  Potential for exposure to more months with malaria 
conditions to have a negative impact on birth weight. 

Heat Stress Consecutive Days of 
High Temperatures 

High temperatures during hot part of year could indicate 
exposure to heat stress. Potential for negative impacts on 
birth weight if a pregnant woman is exposed to heat stress 
during early pregnancy (impacts on placenta and uterus) and 
during late pregnancy (associated with pre-term birth).  

 



 
 
 
 
Data 
Population data 
The population data used in this research come from the 2000, 2006 and 2012 cross-sectional 
Demographic and Health Surveys (DHS) (INSTAT 2006 and 2012). Because of ease of use and 
consistency across time periods, we use DHS data from the Integrated Demographic and Health 
Surveys (IDHS) (Boyle et al. 2018).  DHS data contain highly detailed information on women 
and children’s health for the poorest countries in the world.  These data are widely used for 
research and policy investigations related to health and development.  The data contain 
information on individual and household-level characteristics including educational attainment, 
health, and household assets.  The data also contain retrospective information on child and infant 
health outcomes as reported by the mother.   The data are georeferenced at the level of the DHS 
community cluster. Clusters are spatially shifted (offset) up to 10 km to maintain confidentiality 
of respondents but can be merged with other spatially referenced data as long as an appropriate 
spatial buffer is incorporated into an aggregation strategy (see Grace et al. 2019, Davenport et al. 
2017).   
 
A final, and vitally important aspect of DHS data, is the inclusion of information on length of 
time at current residence.  A single question in the DHS questionnaire asks “how long have you 
been living continuously in this town/village?”1.  Responses are recorded using an annual time 
scale. While not the optimal way of measuring individual migrations or exposures to different 
environmental risks, this question allows us to link individuals to environmental exposures.  In 
terms of pregnancy outcomes, if a respondent has lived in the current community at least 12 
months preceding the birth of the child, then they are included in the analysis because the 
conditions that they were exposed to during pregnancy can be inferred.   
 
For the 2000 and 2006 surveys, around 7% of the respondents included in this study, were 
excluded because the were not in the current community during the pregnancy period or because 
this information was not known.  This question was excluded in the 2012 survey and we 
therefore separate the analyses of the data with and without this residency information.     
 
Environmental Data 
Rainfall data: For the rainfall data, we use the Climate Hazards Group InfraRed Precipitation 
with Station (CHIRPS) dataset (Funk et al. 2014a). The CHIRPS data set, developed by USGS 
scientists in collaboration with the Climate Hazards Group at the University of California Santa 
Barbara, combines a high-resolution (0.05°) climatology (Funk et al. 2015) with time-varying 
station data and observations from geostationary weather satellites. CHIRPS period of record, 
1981-present, compares reasonably well with in situ rain gauge observations in Africa. Research 
projects supported by the United States Agency for International Development use CHIRPS for 
monitoring and forecasting rainfall across Africa (Funk et al. 2014b).  These rainfall data are 
combined with temperature to quantify malaria risk. 
                                                
1 This refers to the particular way that the question is framed in the Mali DHS surveys – other countries also record 
this information but may ask the question slightly differently. 



 
Temperature data: We use temperature data provided by Princeton’s Terrestrial Hydrology 
Research Group (Sheffield et al. 2006). These temperature data were extracted from a dataset 
(v32) of complete meteorological forcings, which includes precipitation, air temperatures 
(minimum, maximum, and average), downward short- and longwave radiation, surface pressure, 
specific humidity, and wind speed. Since its development, the Princeton dataset has been used 
extensively in the literature. Most recently, it has been used to study health outcomes in sub-
Saharan Africa (Davenport et al. 2017), characterize heat waves in West Africa (Odoulami et al. 
2017), inform projections of climate and land use change in West Africa (Wang et al. 2017), 
quantify crop yield uncertainty in sub-Saharan Africa (Dale et al. 2017; Srivastava et al. 2017), 
and drive the Global Land Data Assimilation System (GLDAS; Rodell et al. 2004). These 
temperature data are provided at 0.25°, which is the finest resolution currently available for daily 
global temperature data. While the spatial resolution is coarser than the precipitation data, 
temperatures are generally exhibit less spatial variability than precipitation, thus do not require 
such fine resolution. We use these temperature data to identify and compute heatwave events 
(i.e., Heat Stress pathway), and combine these temperature data with precipitation totals to 
quantify malaria risk.  
 
Vegetation data: The Normalized Difference Vegetation Index (NDVI) serves as a measure of 
vegetation health and subsequently of crop production in a community.  NDVI is a measure of 
greenness, which has been shown to be related to primary productivity and leaf area of plants 
(Sellers, 1985; Townshend and Justice, 1986) and provide a way to directly measure the impact 
of moisture and temperature conditions on vegetation health.  In application, NDVI has been 
linked to local agricultural production and can be used to proxy variations in locally produced 
food (Grace et al. 2014, Husak et al. 2008). Here we use NDVI data from the Advanced Very-
High Resolution Radiometer (AVHRR) instrument aboard NASA’s family of polar orbiting 
platforms and European MetOp satellites.  These NDVI data are available from 1981-2015 at 
bimonthly (~15-day) time steps and 8km spatial resolution. In this research, we consider 
seasonal maximum NDVI to be a proxy for crop production and ultimately food security and 
availability (i.e., Food Insecurity pathway).   
 
Measures 
 
The outcome variable is birth weight.  Unlike other anthropometric measures of food insecurity 
(e.g., stunting), a child’s weight at birth reflects a clearly defined period of exposure – 
approximately 9 months of gestation.  This defined time period allows us to carefully consider 
specific exposures.  DHS data generally does not contain information to calculate exact 
conception date.  We therefore approximate the date of conception as the 9 months prior to the 
birth date.  Birth weight is recorded either based on a respondent’s recall of her child’s birth or 
based on a health card.  Recall may be impacted by other factors and may not be completely 
accurate.  We therefore include a dummy variable in the models indicating if the birth weight 
information was from recall or from the medical card.   
 
There is a relatively large amount of missing data on birth weight – either because a respondent 
was not able to remember the child’s birth weight or because the child’s weight was not 
                                                
2 http://hydrology.princeton.edu/data.pgf.php 



measured at birth.  This missing data does reduce the sample size and, in our sample, results in 
greater representation of birth weights of the children of urban women with more education and 
better access to health care.  We do not believe that there is a pattern to this missingness that 
correlates with any of the pathways investigated here.   
 
Pathway Measures 
Food insecurity is measured using NDVI.  NDVI is best used as a comparative measure – to 
indicate if there is more vegetation in a given area than a neighboring area or for comparing one 
time period to another.  The seasonal maximum NDVI is calculated for a 10 km buffer centered 
on each DHS cluster.  The growing season typically begins in mid-June and lasts through harvest 
in September.  To investigate birthweight outcomes, we consider the maximum NDVI of the 
growing season that occurred just before the pregnancy. This is the growing season that would 
impact the severity of food insecurity during the hunger season3 occurring during the pregnancy.  
For a pregnancy that resulted in a birth in October of year t, we consider the NDVI from the 
growing season of year t. While for a birth occurring in March of year t, we consider the growing 
season of year t-1.  In this way we consider a buffering time between when the food was actually 
harvested and when the harvest may begin to be depleted.  A lower NDVI value would indicate 
that the hunger season would start earlier for a given community, while a higher NDVI value 
would indicate that agricultural production was relatively improved (as compared to other 
communities) and that more food would be stored, delaying and shortening the hunger season. 
 
Malaria is measured using the binary malaria index from Tanser et al. (2003), which is based 
upon physically-derived critical weather thresholds determined to sustain transmission of the 
vector. For each birth in our data set, we compute the number of malarious months for each of 
four trimester periods (i.e., the three months leading up to conception is considered the 
0th trimester; the 1st-3rd trimesters are standard definitions). The range of this index is [0,3]: lower 
values indicate lower risk of exposure to malaria during a given trimester; higher values indicate 
an increased risk in exposure to malaria.  
 
Heat stress is measured using daily maximum temperatures from the Princeton Global 
Meteorological Forcings dataset (Sheffield et al., 2006). We define two variables for each of the 
four trimester periods defined: the total number of days within 90-100F, and the total number of 
days above 100F. The range of these indices is [0,92]: lower values indicate that there was 
adequate relief from extreme temperatures; higher values indicate there was less relief 
from extreme temperatures a given trimester.  Quadratic and cubic approaches have been used in 
other analyses in addition to a binned approach (used here) and a threshold approach (i.e., days 
above an arbitrary cut-off value).  Based on this research a threshold or binned approach best 
captures exposure to heat stress with the focus on the hotter ends of distributions.  Biological and 
public health research indicating that exposure to hot days increases risk of adverse health 
outcomes further supports the focus on very hottest days of the year (cite).   Exploratory analysis 
on the use of “wet bulb temperature” which considers humidity to capture the “feels like” 
temperature does not dramatically vary from the temperature dataset used here.  It is also 

                                                
3 The Hunger Season is defined as the period when food stores from the previous year are depleted but harvests from 
the current year are not yet available.  In a setting with a single growing season, like Mali, the hunger season tends to 
overlap with the growing season.  FEWS.NET provides Hunger Season calendars. 



important to note that the hottest time of year in Mali is also the driest time of year indicating 
that wet bulb temperature would not provide a better measure of the lived conditions. 
 
   
Analytic Approach 
To investigate the differential impact of these different pathways linking climate and health 
outcomes we estimated a suite of regression models using birth weight as the continuous 
outcome variable.  We use a random effects model with the mother as the random effect4  which 
allows us to compare multiple births to a single mother and also to compare birth weights 
between mothers. Because individual factors related to health and development are of known 
significance, we will include these variables in the models to account for the variability in the 
outcome associated with them.  Specific control variables are maternal education and age at 
birth, infant sex, infant’s birth order and flooring type as a measure of household 
wealth/development (citations).  We also adjust for month and year of birth and the livelihood 
zone5 where the household is located.   
 
The first set of regression models (models 1-3) includes these specific control variables and the 
climate indicators for the four pathways described in Table 1. Subsequent models include 
interactions between the climate indicator variables to determine the compounded effects of 
these environmental conditions on birth weight and stunting.  
 
Results 
In Figure 1, we present the results from the four different models corresponding to the three 
different pathways of potential impact.  Beginning with the food insecurity pathway, where 
agricultural production is measured by NDVI, we see a positive association between birth weight 
and seasonal maximum NDVI value of the preceding year.  For example, a child born in year t is 
likely to weigh more when the t-1 seasonal maximum NDVI value is higher.  In our analysis we 
look at births that occur at any point during the 12 months after the growing season.  The timing 
indicates that some women were exposed to the growing season conditions during their 
pregnancy6 as well as to the resulting agricultural production from the harvests. 
 
In the second model, Figure 2, we investigate the relationship between malaria exposure over the 
course of the pregnancy and birth weights.   The results indicate that when a woman is exposed 
to more malarious months during the pre-pregnancy period the birth weight of her infant is likely 
not impacted.  This result is also found for exposures during the first and second trimesters.  
Alternatively, for the third trimester, greater exposure to malarious months is associated with an 
increased birth weight.   
 
In the third model, Figure 3, we investigate the relationship between heat stress and birth weight 
outcomes.  In this model, if a mother was exposed to more very hot days during some stages of 
pregnancy – the birth weight of the infant is likely to be lower than for those women who were 

                                                
4 We also use multi-level regression models and nest individuals within clusters.  In other words, we treat the cluster 
as a random effect.  No significant difference in our findings results from these different analytic approaches. 
5 Livelihood zones info should be included here. 
6 For births occurring January-May of year t, some portion of their pregnancy was experienced during the growing 
season of t-1.  Births occurring June-Aug of year t occur during the hunger season which corresponds to the growing  



exposed to fewer hot days.  While exposure during any of the four trimesters considered in this 
analysis result in negative coefficients (indicating a negative association with birth weight), 
greater exposure during the second and third trimesters produces confidence intervals with all or 
most values as negative.  Therefore, even after accounting for the distribution of coefficients, the 
majority of coefficient result in a negative association between heat waves and birth weight 
outcomes.     
 
 
 
Discussion 
Demographic and public health research on the negative impacts of climate change continues to 
reveal vulnerabilities and highlight groups at great risk for adverse health impacts.  Frequently 
pregnant women and children are identified as those at greatest risk.  In sub-Saharan Africa when 
children are born with decreased birth weight or low birth weight, they potentially face a lifetime 
of ill health and reduced earnings – factors which may be felt by subsequent generations.  In sub-
Saharan Africa, health risks associated with climate change, like reduced birth weight, are 
compounded because, in addition to direct effects associated with heat stress, so many families 
and individuals rely on rainfed agriculture to meet their nutrition needs.  Furthermore, in some 
countries, malaria serves as a constant cause of major illness, sometimes resulting in death.    
 
Ongoing and dramatic improvements in the quantity and quality of high frequency remotely 
sensed data has facilitated dramatic improvements in climate data for use in population-
environment research in sub-Saharan Africa.  This data has been used in many disciplines to help 
address some of the major limitations in the availability of fine-scale, temporally varying 
quantitative data used to proxy food insecurity and disease exposure which is not included in the 
standard survey dataset.  Merging spatially-referenced survey data with these high frequency 
datasets has produced a growing body of research that generally indicates that climate and 
weather influence health outcomes with many lingering questions about the directions of the 
relationships and mechanisms linking climate and health.   
 
In this project we selected a country with a very defined growing season (which is not the hot 
season), high temperatures during the hot season, and where malaria is endemic to examine 
different strategies for sorting out some of the most frequently cited mechanisms that linking 
population, health, and the environment.  The climate, topography and development level of 
Mali is relatively consistent with other land-locked West African countries and so these results 
can potentially be generalized to neighboring countries.  Central, Eastern, and Southern Africa 
face different conditions (multiple growing seasons, highly variable topography within the 
country, presence of irrigated agriculture, and so forth) which may make the results less 
applicable.  Nonetheless, the approach that we have outlined in terms of specifying the 
mechanisms connecting individual health outcomes documented in surveys and their 
climate/environmental contexts may be useful for structuring related questions in other contexts. 
 
Overall our research demonstrates the importance of local food production on the health 
outcomes of pregnant women.  Because we use random-effects models we are able to consider 
multiple children born to the same mother, in general, our results indicate that when there is 
more vegetation (as measured by NDVI) then there is a positive impact on birth weight 



outcomes.  Notably, we constructed this variable with the idea of measuring food in the 
community during the hunger period, therefore, the results indicate that when women experience 
pregnancies following a relatively better season, they birth babies with a higher birth weight.  
This result was consistent across all model specifications and after accounting for individual 
education or wealth levels.   
 
Heat exposure, when looking at temperatures exceeding 100F, during some key periods, of 
pregnancy seems to negatively impact birth weights – especially during the first and third 
trimesters.  Exposures during the 0th trimester are positive for the very hot days – consistent with 
related results that suggest there may be a selection effect from heat (conceptions may be 
delayed under hot temperatures).  The cooler days (between 90F and 100F) generally have no, or 
positive impacts on birthweight – however high numbers of these days most likely occur during 
the growing season, where higher temperatures and plentiful rainfall support agricultural 
production.  
 
Malaria exposure produces the least consistent and clear results.  There are two reasons for this, 
the malaria index is not ideal (Tanser et al. ) and so is likely miss measuring some months.  
Second, the malaria index considers temperature and rainfall and most of the months that are 
assigned a value of “1” are growing season months.  Our strategy of separating NDVI out from 
malaria and using completely different timings and data, should help to sort out food availability 
from malaria exposure, but only to an extent.  It is very likely that the positive association 
observed between the third trimester and malaria exposure is actually capturing growing season 
conditions or some other artifact of the climatological conditions comprising the index. 
 
 
Figure 1: NDVI and birthweight 
 

 
 
 



Figure 2: Malaria and birthweight 
 

 
 
Figure 3: Temperature and birthweight 
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